Electronic and optical properties of high quality low bandgap amorphous (Ge, Si) alloys

Author:

Sheng S.R.,Braunstein R.,Dalal V.L.

Abstract

ABSTRACTHigh quality low bandgap a-(Ge,Si):H alloys were prepared using low pressure, reactive ECR plasma deposition with high H dilution and subtle (sub-ppm) B-doping. The charge transport and optical properties of these low bandgap materials as a function of alloy composition have been investigated by employing the microwave photomixing technique and optical absorption spectroscopy. From the measurements of electric field dependence of the drift mobility, we have found strong evidence for the existence of long-range potential fluctuations in a-(Ge,Si):H alloys, and determined the depth and range of the potential fluctuations, and subsequently the charged defect density, as a function of alloy composition. It was found that at ∼30% Si in Ge, the photoresponse begins to decrease rapidly with increasing Si content due to the decreases in the mobility and lifetime, and meanwhile, both the charged defect density and the Urbach energy increase significantly. The latter indicates an increase in the compositional disorder. It is the potential fluctuations whose effect can be also enhanced by incorporating Si to the alloy system that result in the deterioration of the electronic properties of a-(Ge,Si):H alloys, similar to the case of the incorporation of Ge at the Si end. This enhanced effect accompanies with an increase in the depth, and a decrease in the range of potential fluctuations, leading to a decrease in the mobility, and consequently in the photoconductivity. Our present results demonstrate that the increased charged scattering centers and compositional disorder upon adding Si to the alloys play an important role in the potential fluctuations.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3