Evolution of the Mobility Gap with Thickness in Hydrogen-Diluted Intrinsic Si:H Materials in the Phase Transition Region and Its Effect on p-i-n Solar Cell Characteristics

Author:

Koval R.J.,Pearce J.M.,Ferlauto A.S.,Collins R.W.,Wronski C.R.

Abstract

ABSTRACTInsights into the growth processes and evolution of microstructure in intrinsic hydrogenated silicon (Si:H) films obtained from real-time spectroscopic ellipsometry (RTSE) are extended to the characterization of the optoelectronic properties of the corresponding solar cells. To assess the effects of transition regions from the amorphous to mixed microcrystalline phases, cell structures with and without such regions at different depths in the i-layer from the p-contact have been investigated. Experimental results are presented that clearly demonstrate changes in the mobility gap, Eµ, of the materials as their microstructure evolves with thickness, further supporting the important effect of the hydrogen dilution ratio R (R[H2]/[SiH4]) on the transition between the amorphous and microcrystalline phases. Light J-V characteristics at room temperature and dark J-V characteristics at different temperatures were measured on p(a-SiC:H:B)-i(Si:H)-n(µc-Si:H:P) solar cell structures with i-layers of different thicknesses and R values. The mobility gaps of both the amorphous and microcrystalline intrinsic-layer materials as well as those of the transition layers are obtained from dark J(V,T) measurements. Using numerical simulation, both the light and the dark J-V characteristics are self-consistently modeled assuming sharp changes in the mobility gaps at the intrinsic layer transition thicknesses determined by RTSE.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3