New Grain-Boundary Phases for Nitrogen Ceramics

Author:

Thompson Derek P.

Abstract

ABSTRACTThe drive for improved refractoriness in nitrogen ceramics, which has motivated the removal of residual glass from grain-boundaries by heat-treatment at sub-solidus temperatures, has resulted in the discovery of a wide range of crystalline oxynitride phases. Generally, these phases are oxygen-rich, and can be classified in the same way as the mineral silicates, in which oxygen atoms are coordinated to a maximum of two silicon atoms, with SiO4 tetrahedra joined at either 0,1,2,3 or 4 corners to other tetrahedra. However, the field of oxynitride crystal chemistry is wider than this, because nitrogen in SiN4 tetrahedra commonly occurs coordinated to three silicon atoms, and an additional range of structures exist with nitrogen in this coordination.Oxynitride analogues of mineral silicates are well known in neso-, soro- and cyclostructure types; new structures have recently been reported which belong to the pyroxene family (ino-silicates), and information on their preparation and crystal chemistry is reported here. The sialon U-phase (typical composition Ln3Si3Al3O12N2, Ln = La,Ce,Nd,Sm), is an example of an oxynitride with a structure intermediate between layer (phyllo-) and framework (tecto-) types. Sialon W-phase (approximate composition Ln4Si9Al5O30N, Ln = La,Ce,Nd) has not been completely characterized, but appears to have a structure related to the amphibole group of double-chain silicates.Comments are made on the many oxynitride structures which are still uncharacterized. The suitability of all these oxynitrides as grain-boundary phases in silicon nitride and sialon ceramics is discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3