Laser Induced Avalanche Ionization and Electron-Lattice Heating of Silicon with Intense Near IR Femtosecond Pulses

Author:

Pronko P.P.,VanRompay P.A.,Singh R.K.,Qian F.,Du D.,Liu X.

Abstract

ABSTRACTA two temperature finite difference model has been developed and is used to describe the response of materials under ultrafast femtosecond laser pulses in the energy regime where melting and vaporization can occur. In applying this model to silicon it is observed that, for 800 nm light, laser pulse intensities that are just sufficient to achieve threshold for vaporization are also at the level of optical electric field strength where electron avalanche breakdown at the surface of the material can occur. For sub-picosecond pulses the physical response of the material is associated with a strongly temperature dependent coupling coefficient connecting electron and phonon thermal distributions. The results of these analyses demonstrate that a very thin near solid density plasma, caused by avalanche ionization, is responsible for the surface heating and subsequent thermodynamic response of the material. This interpretation is consistent throughout the pulse duration range from 80 femtoseconds to 0.2 nanoseconds. The proposed mechanism for absorption, at the near infra-red wavelength being used here, is very different from the types of mechanisms usually considered for nanosecond laser heating of semiconductors. Surface damage threshold is determined by atomic force microscopy and the threshold for plasma optical emission by photomultiplier detection . Melt deths are probed with SIMS impurity diffusion profiles and high resolution cross sectional TEM.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference21 articles.

1. 1 Resident visiting graduate student at the Center for Ultrafast Optical Science, Department Electrical Engineering and Computer Science, University of Michigan 48109

2. A novel method for simulating laser-solid interactions in semiconductors and layered structures

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3