Author:
Olsen C. S.,Beeman J. W.,Hansen W. L.,Hallerab E. E.
Abstract
AbstractWe report on the development of Germanium Blocked Impurity Band (BIB) photoconductors for long wavelength infrared detection in the 100 to 250.μm region. Liquid Phase Epitaxy (LPE) was used to grow the high purity blocking layer, and in some cases, the heavily doped infrared absorbing layer that comprise theses detectors. To achieve the stringent demands on purity and crystalline perfection we have developed a high purity LPE process which can be used for the growth of high purity as well as purely doped Ge epilayers. The low melting point, high purity metal, Pb, was used as a solvent. Pb has a negligible solubility <1017 cm−3 in Ge at 650°C and is isoelectronic with Ge. We have identified the residual impurities Bi, P, and Sb in the Ge epilayers and have determined that the Pb solvent is the source. Experiments are in progress to purify the Pb. The first tests of BIB structures with the purely doped absorbing layer grown on high purity substrates look very promising. The detectors exhibit extended wavelength cutoff when compared to standard Ge:Ga photoconductors (155 μm vs. 120 μm) and show the expected asymmetric current-voltage dependencies. We are currently optimizing doping and layer thickness to achieve the optimum responsivity, Noise Equivalent Power (NEP), and dark current in our devices.
Publisher
Springer Science and Business Media LLC
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献