Magnetic anisotropy, sress, and martensitic transformation in Ni-Mn-Ga thin films on Si(100) wafer

Author:

Hagler Michael,Chernenko Volodymyr A.,Ohtsuka Makoto,Besseghini Stefano,M¨llner Peter

Abstract

ABSTRACTNi-Mn-Ga magnetic shape memory alloys (MSMAs) tend to undergo a large deformation upon the application of a magnetic field. This deformation is attributed to twin boundary motion in the martensitic phase. In an effort to harness the shape memory effect for use in sensors, actuators, and micro-devices, the behavior of Ni-Mn-Ga thin films is attracting attention. Substrate curvature measurements were done with Ni-Mn-Ga films with a thickness of 2.0 μm sputter-deposited on Si(100) wafer having amorphous 500 nm thick SiNx buffer layer. During the wafer bow curvature measurements, stress levels of 0.65 GPa were attained. The martensitic transformation is manifested by a stress-temperature hysteretic loop. Measurements of magnetization curves were carried out on Ni-Mn-Ga films with thickness between 0.5 and 3.0 μm. A change of the magnetization behavior from the easy-plane type for thin films to the out-of-plane easy-axis type for thick films is observed. This effect is caused by the interplay between different contributions to the overall anisotropy of film.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3