Thin Film Poly-Si Solar Cell on Glass Substrate Fabricated at Low Temperature

Author:

Yamamoto Kenji,Yoshimi Masashi,Suzuki Takayuki,Tawada Yuko,Okamoto Yoshifumi,Nakajima Akihiko

Abstract

ABSTRACTThe performances of thin film poly-Si solar cells with a thickness of less than 5 μm on a glass substrate have been investigated. The cell of glass / back reflector / n-i-p type Si / ITO is well characterized by the structure of naturally _surface texture and enhanced absorption with a back reflector (STAR), where the active i-type poly-Si layer was fabricated by plasma chemical vapor deposition (CVD) at low temperature. The cell with a thickness of 2.0 μm demonstrated an intrinsic efficiency of 10.7% (aperture 10.1%), the open circuit voltage of 0.539 V and the short current density of 25.8 mA/cm2 as independently confirmed by Japan Quality Assurance. The optical confinement effect explains the excellent spectral response at long wavelength for our cells through the PCID analysis. The higher sensitivity at long-wavelength of our cell appeared in quantum efficiency curves is well correlated to the result of reflectance measurement. The efficiency of 9.3% cell with a thickness of 1.5 pm was proved to be entirely stable with respect to the lightsoaking. Based on the result of various evaluation of diffusion length, it is postulated that the low temperature poly-Si prepared by plasma CVD gives a device quality of poly-Si film.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 75 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Sources, Sensors, and Detection Methods;The Physical Chemist's Toolbox;2023-01-27

2. Amorphous and Microcrystalline Silicon;Springer Handbook of Electronic and Photonic Materials;2017

3. Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells;Diffractive Optics for Thin-Film Silicon Solar Cells;2016-09-27

4. Silicon nano network p–n sandwich solar cell;Solar Energy Materials and Solar Cells;2013-08

5. Control of electron temperature in SiH4/H2 plasma for obtaining high photovoltaic performance in microcrystalline silicon solar cells;Journal of Physics: Conference Series;2013-06-13

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3