Relationships Between Phase Diagrams, The To, and Tn Temperatures, Cooling Rates and Glass Forming Ability

Author:

Massalski T. B.,Woychik C. G.,Murray J. L.

Abstract

The notion that it should be possible to assess the glass forming ability (GFA) of a given alloy, or alloy system, is a well established concept. If crystallization in the liquid on cooling can be prevented relatively easily, making it possible for a liquid alloy to be cooled through the glass transition temperature (Tg), while employing only a relatively slow cooling rate, the GFA is said to be large. A numerical measure of GFA is frequently expressed in terms of the reduced glass temperature ratio Trg=Tg/Tl, where Tl is the equilibrium liquidus temperature [1]. While the role of Tg in this ratio is clear, the role of Tl is less obvious. Tl can be derived from the features of the phase diagram, but attempts have also been made to calculate Tl from the heats of fusion and the melting points of the constituents involved in a given alloy [2]. At the same time, however, it must be recognized that in a crystallization process under rapid cooling conditions both the temperature of solidification and the composition and structure of the crystalline phase, or phases, which compete with glass formation, are likely to be highly nonequilibrium. Even if a suitable adjustment of the Tl value is made to allow for these features, the Tl fails to take into account the kinetic aspects involved in the glass forming process. Yet these aspects undoubtedly also influence the GFA.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference10 articles.

1. Nucleation during continuous cooling—application to massive transformations

2. 10. Murray J. , “Evaluated Phase Diagram for the Cu-Ti System,” Bull. of Phase Diagrams, ASM, 1983, in press.

3. On the correlation between glass-forming tendency and liquidus temperature in metallic alloys

4. 3. Woychik C. G. and Massalski T. B. , “Relationship between Glass Formation and Crystallization in Cu-Ti Alloys,” to be published.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3