Production and Properties of Glass Fibre-Reinforced Polymer Composites with Nanoparticle Modified Epoxy Matrix

Author:

Wichmann Malte H.G.,Gojny Florian H.,Sumfleth Jan,Fiedler Bodo,Schulte Karl

Abstract

AbstractIncreasing the mechanical performance, e.g. strength, toughness and fatigue properties of composites is the objective of many ongoing research projects. Nanoparticles, e.g. carbon nanotubes (CNTs) and fumed silica provide a high potential for the reinforcement of polymers. Their size in the nanometre regime make them suitable candidates for the reinforcement of fibre reinforced polymers, as they may penetrate the reinforcing fibre-network without disturbing the fibre-arrangement.In this work, glass fibre-reinforced epoxy composites with nanoparticle modified matrix systems were produced and investigated. GFRPs containing different volume fractions of the nanofillers were produced via resin transfer moulding. Matrix dominated mechanical properties of the GFRP laminates could be improved by the incorporation of nanoparticles. The addition of only 0.3 wt.% CNTs to the epoxy matrix increased the interlaminar shear strength from 33.4 to 38.7 MPa (+16%). Furthermore, the application of electrically conductive nanoparticles enables the production of conductive nanocomposites. This offers a high potential for antistatic applications and the implementation of functional properties in the composite structures. The effects of different filler types and volume fractions on the electrical properties of the GFRPs were investigated. GFRPs containing 0.3 wt.% of CNTs, for example, exhibit an anisotropic electrical conductivity. Furthermore, an electrical field was applied to the composites during curing. The effects on the resulting electrical and mechanical properties are discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference11 articles.

1. Influence of nano-modification on the mechanical and electrical properties of conventional fibre-reinforced composites

2. Helical microtubules of graphitic carbon

3. Electric field-induced aligned multi-wall carbon nanotube networks in epoxy composites

4. 8 Wichmann M.H.G. , Sumfleth J. , Gojny F.H. , Quaresimin M. , Fiedler B. , Schulte K. , Eng. Frac. Mech., submitted.

5. 5 Wichmann M.H.G. , Cascione M. , Fiedler B. , Quaresimin M. , Schulte K. , Compos. Interfaces; in press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Dispersibility of Carbon Nanotubes;Materials Science Forum;2007-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3