Author:
Golubev Victor A.,Strikanov Andrey V.,Golubev Aleksey V.,Bugrov Vladimir G.,Potemkin Grigory A.,Kudel’kin Valery B.,Mochalov Mikhail A.,Faehl Rickey J.
Abstract
AbstractAt present amorphous metallic alloys have the broad expansion in various fields of science&engineering as a result of their unique properties. In particular, soft magnetic amorphous alloys are extensively used in electrical engineering. However the production of considerable-size nonporous wares based on the powders (or tapes) of these alloys is heavy problem owing to high hardness of the particles. Therefore shock wave’s compacting or Dynamic Compacting (DC) method is promising one to produce the wares on the base of powders of amorphous alloys because it can provides high strength and near zero porosity of the wares. The experimental D-U diagrams of soft magnetic amorphous alloys were obtained to realize this method of compacting. The calculations of the amplitude and duration of shock wave were carried out. The several versions of explosive devices using shock plane wave generator to produce circular magnetic conductors were developed and were tested. These magnetic conductors are based on amorphous alloys of 5BDSR, GM414, 10NSR trademarks (Fe with Cu, Nb, Si, B additives). XRD analysis proved that amorphous state of the alloys remains the same up to 20 GPa shock wave’s pressures. The mechanical, structural, electrical and magnetic properties both initial amorphous alloys and compacted one were obtained and compared as a result of the implemented works. It was stated that DC leads to increase of magnetic conductivity by factor ∼15 with respect to initial amorphous alloys powder. Besides the specific losses decrease in ∼4 times.
Publisher
Springer Science and Business Media LLC