The Role and Management of Free Water in the Production of Durable Radioactive Waste Products Using Hydraulic Cements

Author:

Angus Michael J.,Butcher Ed,Godfrey Ian H.,Milestone Neil B.

Abstract

AbstractWater is a necessary component in the production of encapsulated wastes based on hydraulic cements which are widely used for immobilization of intermediate and low level waste (ILW) and (LLW). Apart from providing the fluidity required to readily transport slurry wastes, it plays an essential role in hydrating the cement. Too low a water content prevents homogeneous mixing of the cement binder and waste and does not provide the fluidity needed for effective infilling of solid wastes. The water left after hydration creates a porous network that allows egress of gaseous corrosion/radiolytic degradation products such as hydrogen. A broad envelope (i.e. range) of acceptable water/binder ratios is essential for effective process control, particularly for the encapsulation of slurry wastes which have widely varying water contents.Nevertheless, the presence of large amounts of free water in the pore system of the hardened matrix allows easy transport of soluble ions such as hydroxide, which can lead to metal corrosion, and the increased permeability of the system increases the leachability. Therefore effective management of the ‘free’ water content of a waste product will allow optimisation of both the encapsulation process and the product quality and durability.This paper describes a range of innovative approaches to ‘water management’, including the use of alternative hydraulic cements, modification of powder characteristics and use of superplasticised composite OPC grouts and examines the contribution of 1H NMR relaxometry in providing improved understanding of the distribution of water within the pores of the hardened cement matrix.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3