Terahertz Ellipsometry Using Electron-Beam Based Sources

Author:

Hofmann Tino,Herzinger Craig M.,Schade Ulrich,Mross Michael,Woollam John A.,Schubert Mathias

Abstract

AbstractThe precise determination of materials' optical constants in the THz frequency domain is an important new challenge in basic research and is crucial for novel technological applications. Spectroscopic ellipsometry is known as a vital tool for the determination of the materials' dielectric function including its anisotropy. However, ellipsometric measurements at very long wavelengths are difficult due to the lack of reliable sources of sufficient intensity and brilliance. Here we report on our recent advances to use ellipsometry in combination with different electron beam based sources in order to in investigate condensed matter samples in the frequency range from 0.1 to 8 THz. We successfully employ terahertz radiation emitted from two different tunable desktop sources (Smith-Purcell-effect source and a backward wave oscillator) in a polarizer-sample-analyzer ellipsometer scheme. We discuss and present THz range physical material properties due to bound and unbound charge resonances in semiconducting materials. This research will provide important understanding of optical properties for novel materials, inspire new designs, and accelerate development of optical Terahertz devices.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3