A microstructure diagram for known bounds in conductivity

Author:

Zhou Shiwei,Li Qing

Abstract

Two important analytical means—theoretical bounds and homogenization techniques—have gained increasing attention and led to substantial progress in material research. Nevertheless, there is a lack of relating material microstructures to an entire theoretical bound and exploring the possibility of generating multiple microstructures for each property value. This paper aims to provide a microstructure diagram in relation to “bound B” constructed by translation and Weiner bounds. The inverse homogenization technique is used to seek for the optimal phase distribution within a base cell model to make the effective conductivity approach the “bound B” in two- or three-phase material cases. The design shows that the “bound B” is exactly attainable for two-phase composites even with single-length-scale microstructures. Although the multiphase translations bounds are well known to be asymptotically attainable on some parts, they still appear too roomy to be attained by single-length-scale composites. Our results showed a certain improvement in the attainability of single-length-scale structural composites when compared with new bounds established by [V. Nesi: Proc. R. Soc. Edinburgh Sect. A125, 1219 (1995)], [V. Cherkaev: Variational Methods for Structural Optimization (Springer Verlag, New York, 2000)], and (N. Albin et al.: Proc. R. Soc. London Ser. A463, 2031 (2007)]. Applicability of the translation bounds to the composites with high-contrast conductivities of phase compositions is also studied in this paper. Finally, we explore the multiple solutions to the optimal microstructures and categorize them into three classes in line with their topological resemblance, namely, spatially identical, unidirectionally identical, and bidirectionally different solutions.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3