Microstructural and electrochemical characterization of hydroxyapatite-coated Ti6Al4V alloy for medical implants

Author:

Xie Jianhui,Luan Ben Li

Abstract

The in vitro behaviors of the etched, electrochemically anodized, and hydroxyapatite (HA)-coated Ti6Al4V alloys were investigated through microstructural analysis, electrochemical measurements, and immersion tests in the Hank’s solution. A nanometer-scale, bonelike porous structure with a layer of TiO2on top was formed during the anodization process. The surface of the coated substrate was composed of a thin TiO2layer adjacent to the substrate, a thick monolithic HA on the outside, and a composite layer of TiO2and HA in the middle. The anodization significantly improved the stability of the Ti6Al4V alloy in Hank’s solution due to a layer of TiO2formed on the surface. The precoated HA further improved the stability of the Ti6Al4V alloy due to a composite layer of TiO2and HA. The barrier layer of the composite of TiO2and HA was suggested by the capacitive behavior of the HA-coated substrate in the electrochemical impedance spectroscopy. The electrochemical measurements implied a high tendency for the new formation of HA on the precoated HA and the anodized substrates, which was confirmed through the immersion tests. The newly formed HA on the anodized substrate was scattered over the entire surface. The newly formed HA on the HA-precoated surface mingled with the precoated HA, and gradually a new layer of HA was formed on top. These proved the favorable condition of the anodized surface as a prerequisite step for coating HA and the conductive promotion of new HA formation on the precoated surface. The new formation of HA during the immersion might suggest that artificial joints pretreated through anodization and HA coating could induce strong bonding to the bone due to the easy growth of new HA.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference37 articles.

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3