Specific interaction characteristics in organoclay nanocomposite of miscible poly(styrene-co-acrylonitrile) and poly(vinyl chloride) blend

Author:

Lim Sang-Kyun,Lee Eun-Hee,Chin In-Joo

Abstract

We propose a new method for the preparation of the polymer/organoclay nanocomposite, termed the solution and melt mixing (SOAM) method, where the polymer and clays are first blended in solution, and subsequently the mixture is further blended in the melt. We prepared the ternary nanocomposite systems of poly(styrene-co-acrylonitrile) (SAN), poly(vinyl chloride) (PVC) and Cloisite25A clays (C25A) by solution blending as well as by the SOAM method. The C25A content in the nanocomposite was optimized by analyzing the x-ray diffraction (XRD) data of binary mixtures (SAN/C25A and PVC/C25A nanocomposites). The values of the interaction parameter (χab) were calculated by using the molar attraction constants of the specific functional groups derived from Hoy’s table. While PVC and C25A were shown to be highly compatible, SAN and C25A were less compatible. XRD data and transmission electron microscopy observations indicated that the SAN/PVC/C25A nanocomposites had at least partially exfoliated structures. The tensile modulus and the elongation at break of the nanocomposites prepared by the SOAM method were higher than those prepared by simple solution blending.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3