Author:
Ramirez L.,Mecartney M.L.,Krumdieck S.P.
Abstract
ZrO2films deposited on silicon (100) substrates using pulsed-pressure metalorganic chemical vapor deposition (PP-MOCVD) with zirconium n-propoxide (ZnP) Zr(OC3H7)4were dense and fully crystalline for substrate temperatures of 500 to 700 °C. Film thicknesses were 40 to 815 nm thick, measured after growth using ellipsometry and scanning electron microscopy (SEM). The growth rate was between 0.1 μm/h at 500 °C and 1 μm/h at 700 °C. Transmission electron microscopy (TEM) and x-ray diffraction (XRD) indicated an average grain size of 10 to 20 nm. There was a random orientation of cubic/tetragonal zirconia at the highest experimental temperature of 700 °C. SEM and atomic force microscopy (AFM) was used to characterize island height of discontinuous films in the initial stages of growth where defects in the substrate caused preferred nucleation of isolated particles. At later stages of growth, the average surface roughness of continuous films was 30 nm, which revealed a more uniform growth had developed. A growth model is proposed, and optimal growth conditions are suggested for targeted microstructures of ZrO2films.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
16 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献