Crystallographic and transport studies on AsF5 intercalated graphite from 4.2 to 295 K. II. Effects of structural transformations and demixing on basal plane and c-axis electrical resistivity

Author:

McRae E.,Lelaurain M.,Marêché J. F.,Furdin G.,Hérold A.,Saint Jean M.

Abstract

Part I of this study has shown that first stage AsF5 intercalated graphite samples can be classified into two types of compounds, depending upon the nature of the structural modifications they undergo upon lowering the temperature from 295 to 4.2 K. These structural changes are related to demixing of the species contained within the intercalate resulting in the formation of phases rich in AsF5, AsF6 − AsF5, or AsF3 depending on the degree to which the AsF5 has been converted into AsF6 and AsF3. Resistivity studies have been carried out in the basal plane [ρa (T)] and along the c axis [ρc (T)]. The type 1 compounds, in which the AsF5 has undergone little conversion, manifest a ρa (T) transition related to the incommensurate-to-commensurate (I⇉C) transformation of the AsF5 in-plane unit cell and a rapid, structureless 300 to 200 K decrease in ρc (T). The type 2 compounds involving a greater degree of conversion of AsF5 into AsF3 and AsF6 yield more complex ρc (T) behavior from 300 to 200 K attributed to the more involved ordering phenomena; no anomalies are seen in ρa (T). In the case of the stage 2 compounds, changes in ρc (T) are seen down to lower temperatures in accord with structural data indicating a downshift of the I⇉C transformation by ∼ 70 K. The transport results are discussed in the light of the crystallographic data and the low-temperature results are analyzed within the framework of proposed conductivity models.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3