Flame Synthesis of Y2O3:Eu Nanophosphors Using Ethanol as Precursor Solvents

Author:

Qin Xiao,Ju Yiguang,Bernhard Stefan,Yao Nan

Abstract

Y2O3:Eu nanophosphors were prepared by flame synthesis using ethanol or water as precursor solutions. The effects of precursor solvents and flame temperature on particle size, morphology, and photoluminescence intensity were investigated. The results showed that flame synthesis using ethanol solution could produce nanoparticles with better homogeneity, smoother surface structure, and stronger photoluminescence intensity than using water. It was found that the concentration quenching limit of the as-prepared nanophosphors from both ethanol and water solution was 18 mol% Eu, which is higher than the reported limit at similar particle size. The x-ray diffraction (XRD) spectra showed that the ethanol precursor solvent produced monoclinic phase Y2O3:Eu nanoparticles at a lower flame temperature than previously reported. It was also shown that the particle size could be controlled by varying the precursor concentration and flame temperature.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference33 articles.

1. 27 Kee R.J. , Grcar J.F. , Smooke M.D. and Miller J.A. CHEMKIN-II: A fortan chemical kinetics package for the analysis of gas-phase chemical and plasma kinetics. SANDIA report SAND85-8240, (Sandia National Laboratories, Albuquerque, NM, 1994).

2. Size dependent efficiency in Tb doped Y2O3 nanocrystalline phosphor.;Goldburt;J. Lumin.,1997

3. 33 The International Centre for Diffraction Data, http://www.icdd.com, PDF #44-0399.

4. 32 The International Centre for Diffraction Data, http://www.icdd.com, PDF#25-1011a.

5. Optical properties of nanocrystalline Y2O3:Eu depending on its odd structure

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3