Author:
Zhang M.,Olson E.A.,Twesten R.D.,Wen J.G.,Allen L.H.,Robertson I.M.,Petrov I.
Abstract
We have designed and fabricated a standardized specimen holder that allows the operation of a microelectromechanical system (MEMS) device inside a transmission electron microscope (TEM). The details of the design and fabrication processes of the holder are presented. The sample loading mechanism is simple and allows reliable electrical contact to eight signal lines on the device. Using a MEMS-based, nanojoule calorimeter, we performed rapid-heating experiments on Bi nanoparticles to demonstrate the functionality of the holder. We show that the heat capacity can be measured simultaneously with TEM observations. The size-dependent melting of Bi nanoparticles was observed simultaneously by nanocalorimetry and selected area diffraction measurements. We believe this approach will open up new experimental pathways to researchers, combining the speed and resolution of transmission electron microscopy with the flexibility, precision, and compactness of MEMS-based sensors and actuators.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献