Initial Oxidation Kinetics of Cu(100), (110), and (111) Thin Films Investigated by in Situ Ultra-high-vacuum Transmission Electron Microscopy

Author:

Zhou Guangwen,Yang Judith C.

Abstract

The initial oxidation stages of Cu(100), (110), and (111) surfaces have been investigated by using in situ ultra-high-vacuum transmission electron microscopy (TEM) techniques to visualize the nucleation and growth of oxide islands. The kinetic data on the nucleation and growth of oxide islands shows a highly enhanced initial oxidation rate on the Cu(110) surface as compared with Cu(100), and it is found that the dominant mechanism for the nucleation and growth is oxygen surface diffusion in the oxidation of Cu(100) and (110). The oxidation of Cu(111) shows a dramatically different behavior from that of the other two orientations, and the in situ TEM observation reveals that the initial stages of Cu(111) oxidation are dominated by the nucleation of oxide islands at temperatures lower than 550 °C, and are dominated by two-dimensional oxide growth at temperatures higher than 550 °C. This dependence of the oxidation behavior on the crystal orientation and temperature is attributed to the structures of the oxygen-chemisorbed layer, oxygen surface diffusion, surface energy, and the interfacial strain energy.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 86 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3