Relationships between initial unloading slope, contact depth, and mechanical properties for conical indentation in linear viscoelastic solids

Author:

Cheng Yang-Tse,Cheng Che-Min

Abstract

Using analytical and finite element modeling, we studied conical indentation in linear viscoelastic solids with either displacement or load as the independent variable. We examine the relationships between initial unloading slope, contact depth, and viscoelastic properties for various loading conditions such as constant displacement rate, constant loading rate, and constant indentation strain rate. We then discuss whether the Oliver–Pharr method for determining contact depth, originally proposed for indentation in elastic and elastic-plastic solids, is applicable to indentation in viscoelastic solids. We conclude with a few comments about two commonly used experimental procedures for indentation measurements in viscoelastic solids: the “hold-at-peak-load” technique and the constant indentation strain-rate method.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference33 articles.

1. 33. Cheng Y-T. and Cheng C-M. : Relationships between initial unloading slope, contact depth, and mechanical properties for spherical indentation in linear viscoelastic solids. GM R&D Publication R&D. 10,059 (Feb. 21, 2005).

2. Scaling relationships in indentation of power-law creep solids using self-similar indenters

3. Indentation power-law creep of high-purity indium

4. Viscoelastic effects during unloading in depth-sensing indentation

5. Investigation of creep behaviour under load during indentation experiments and its influence on hardness and modulus results

Cited by 84 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3