Abstract
A new Mg–Cu–Ni–Ag–Zn–Y–Gd alloy with significantly improved glass forming ability (GFA) was developed in this work. Mg65Cu7.5Ni7.5Ag5Zn5Y5Gd5 bulk metallic glass (BMG) with a diameter of 14 mm was successfully fabricated by conventional copper mold casting method in air atmosphere. The critical cooling rate for glass formation was estimated to be about 20 K/s. When the maximum diameter for glass formation was compared with those previously reported for Mg-based alloys, the Mg65Cu7.5Ni7.5Ag5Zn5Y5Gd5 alloy showed the highest GFA. However, when the GFA was compared with those of Mg-TM-RE alloys (TM: Cu, Ni, Zn, and Ag; RE: Y and Gd), the significant improved GFA of the Mg–Cu–Ni–Zn–Ag–Y–Gd alloy cannot be properly represented by ΔTx, Trg, K, and γ parameters. In contrast to most of the Mg-based BMGs reported so far, the Mg65Cu7.5Ni7.5Ag5Zn5Y5Gd5 BMG exhibits yielding and plastic deformation during compressive loading.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献