Author:
Sundar R.S.,Deevi S.C.,Reddy B.V.
Abstract
Age-hardening behavior of a new generation of FeCo alloys [Fe–40Co–5V–0.005B–0.015C–0.5Mo–0.5Nb (at.%)] is characterized by microhardness, tensile testing, electrical resistivity, and magnetic properties. The alloy exhibits maximum hardening when aged at 600 °C. Precipitation of γ2 (V-rich face-centered cubic phase) during aging appears to be responsible for the observed hardening behavior. The alloy exhibits superior creep resistance when subjected to solutionizing in γ phase field and aged at 600 °C. On the other hand, the room temperature tensile ductility of the aged alloy depends on the grain size, which in turn can be controlled by varying the solutionizing condition. The age-hardened alloy exhibits a room temperature electrical resistivity of 70–75 μΩ cm. The higher resistivity of the present alloy as opposed to the commercial FeCo–2V alloys is attributed to the high V content of the alloy. Structure-sensitive magnetic properties like coercivity and core losses of the alloy are affected by the aging treatment, and the maximum coercivity is observed when the alloy is aged at 600 °C. High coercivity of the alloy is attributed to the fine distribution of paramagnetic γ2 precipitate, fine grain size, and internal stress arising from phase transformation.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献