Hardening by Point Defects and Solutes in B2 Intermetallics

Author:

Pike L. M.,Chang Y. A.,Liu C. T.,Anderson I. M.

Abstract

ABSTRACTThis paper provides a review of recent progress on point defect and solute hardening in binary and ternary B2 intermetallics. As is the case for disordered metallic solutions, the presence of point defects and solute atoms in ordered intermetallic compounds results in solid solution hardening (SSH). However, factors unique to ordered systems are often responsible for unusual hardening effects. Binary compounds with identical crystal structures can exhibit significantly different hardness behavior. Ternary solute additions to ordered compounds can give rise to apparent solid solution softening as well as unexpectedly rapid hardening. These effects arise from the interaction of multiple defect types as well as the presence of multiple sublattice sites available for solute occupation. Therefore, before the SSH behavior of ordered intermetallics can be properly studied, it is necessary to develop an understanding of the types and quantities of the point defects which are present. Three recent studies by the authors are reviewed. Much of the work was done on NiAl and FeAl in binary form as well as with ternary additions. Defect concentrations over wide ranges in alloy composition and quenching temperature were determined using the ALCHEMI (atom location by channeling enhanced microanalysis) technique combined with vacancy measurements. Hardness values were also measured. It was found that most of the observed SSH effects could be rationalized on the basis of the measured point defect concentrations.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3