Reversible Hydrogen Absorption/Desorption and Related Lattice Deformation of Ti3Al Based Alloys in the Ti-Al-Nb System

Author:

Ito Kazuhiro,Zhang Lanting T.,Okabe Yoshiharu,Vasudevan Vijay K.,Yamaguchi Masaharu

Abstract

ABSTRACTHydrogen absorption/desorption of Ti3Al-based alloys with α2 single-phase, β0 single-phase and β/O two-phase microstructures was investigated to obtain systematic understanding microstructure effects. On exposing all the alloys to hydrogen, β (βH) and γ (γH) hydrides are formed. The βH and γH have bcc and bct (close to fcc) based structures, respectively. The hydrogen/metal ratio of the γH is larger than that of βH. Thus, solute hydrogen in Ti3Al based alloys stabilizes the bcc-based phase just like Nb, regardless of their original structure before hydrogenation. On the other hand, reversible hydrogen absorption/desorption around 100°C and related reversible βHH transformation was observed in β/O two-phase (Ti,Nb)3Al and α2-Ti3Al alloys, but not obviously observed in a β0-(Ti,Nb)3Al alloy. In forming the βH, the expansion of the β0 and β phases occurred isotropically keeping their structures B2 and bcc, respectively. In contrast, the O and α2 phases expanded in anisotropic manner. The lattice deformation for the βH→γH transformation can be described similarly to those for the O→βH and α2→βH transformations. Such lattice deformation in anisotropic manner most likely agrees with that observed in a martensitic displacive transformation, because of the surface relief observed on the γH after the βH→γH transformation in the β0-(Ti,Nb)3Al alloy and many twins formed during the α2→βH transformation in the α2-Ti3Al alloy. Mechanisms of the reversible βHH transformation in the β/O two-phase (Ti,Nb)3Al and α2-Ti3Al alloys was proposed on the basis of similarities in the lattice deformation and ordering of hydrogen atoms required for the βHH, O-βH and α2H transformations.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3