Comparative Studies of the Structure and Microstructure of Zn2x(CuBIII)1-xX2 Semiconductors (BIII=Ga,In; X=S,Se,Te)

Author:

Schorr Susan,Wagner Gerald,Tovar Michael,Sheptyakov Denis

Abstract

AbstractPowder samples of (ZnX)2x(CuBX2)1-x mixed crystals (B=Ga,In; X=S,Se,Te) were prepared by solid state reaction of the elements and annealed with cooling rates between 2 - 42 K/h in the entire composition range. Structural parameters (e. g. lattice parameter, tetragonal deformation η) were investigated by X-ray and neutron diffraction studies. The microstructure was studied by transmission electron microscopy (TEM) and HRTEM. The chemical composition was determined by EDX analysis on the transmission electron microscope.The chemical disorder process in the 2(ZnX)x(CuBX2)1-x solid solution series leads to a phase separation, i. e. in a certain composition range (2-phase field) two phases, tetragonal domains and a cubic matrix, coexist. Its width depends on the three-valent cation only and is independent from the size of anion. The habit of the tetragonal domains is like a flat discus, its short extension lies always parallel to their tetragonal c-axis. They are simultaneously arranged on the (100),(010) and (001) planes within the cubic matrix. After nucleation of the domains, their growth obeys t1/2, i.e. it is controlled by diffusion. In the sulfides and selenides systems with In as three-valent cation the tetragonal domains are 'infected' by stannite type (or CuAuI type) cation ordering independently of their orientation, whereas in the tellurides system CuPt type cation ordering was obtained. The tetragonal (ZnX)2x(CuGaX2)1-x mixed crystals exhibit only chalcopyrite type structure and orientation domains without another type of cation ordering.In the single phase regions the lattice parameter follows Vegrads rule, whereas in the 2-phase field the both phases try to match in the a-b-plane (atetr∼acub), causing an increase of the tetragonal lattice parameter c and herewith a strong increase of the tetragonal deformation η.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3