Chemical Stability of Fiber-Metal Matrix Composites

Author:

Norman J. H.,Reynolds G. H.,Brewer L.

Abstract

AbstractReinforcing phases used to strengthen a metal matrix cannot be appreciably chemically reactive for the times and temperatures expected during the service life of the composite. Where accurate phase diagrams exist that describe the interactions of the metal matrix and the reinforcing phase, the evaluation process can be completed with these diagrams and, if reactivity is encountered, with appropriate kinetic parameters. These complete phase diagrams are rarely available for complex materials systems. Therefore, we have adopted several ways of using available thermochemical data to estimate the compatibility of various metal matrix composite systems. Usually evaluations involve comparing matrix component activities, using reinforcing phase component thermochemistry to decide whether or not a reaction is expected by examining product chemical activities. Other methods use integral thermochemical properties of reactants and possible products in estimations. In either case a single thermodynamically favored reaction will disqualify a reinforcing phase on an energetic basis if not a kinetic basis. Where no disqualifying reactions are found, the reinforcing phase-metal matrix system is considered a candidate to be proved or disproved in experimental studies which may reveal reaction products not included in the extensive but still limited thermochemical literature. This approach has been advantageously applied to several systems. The study of Ti-Al metal matrices with selected reinforcing phases is discussed as an example.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference7 articles.

1. A thermodynamic assessment of the aluminum-titanium system

2. Thermodynamic Properties of Selected Binary Aluminum Alloy Systems

3. 1. Yang L. , Norman J.H. , Reynolds G.H. , MSNW, Inc., Project No. 293253 Quarterly Report - April-June 1986.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3