Mechanical Properties, Fracture Behavior, and Grainboundary Chemistry of B-Doped Nial

Author:

George E. P.,Liu C. T.,Liao J. J.

Abstract

AbstractThis paper summarizes the results of our work aimed at overcoming the intrinsic grainboundary weakness of NiAI by microalloying with boron. In previous work we have shown that 300 wppm boron is very effective in suppressing intergranular fracture in NiAI [1]. It does this by segregating strongly to the grain boundaries and strengthening them. Despite this dramatic effect on the fracture mode, however, boron is unable to improve ductility because it is a potent solid solution strengthener, more than doubling the yield strength relative to that of undoped NiA1. The present work attempts to decrease this deleterious hardening effect by lowering the bulk concentration of boron in NiA1. Our results show that if the boron concentration in the bulk is lowered to 30 wppm, the yield strength of boron-doped NiA1 is only about 30% higher than that of undoped NiAI. In addition, there is enough boron at the grain boundaries of this alloy to suppress intergranular fracture. Under these conditions, boron-doped NiAI has a tensile ductility of 2%, which is essentially identical to that of undoped NiA1. This result, namely that the strengthening of grain boundaries by boron does not by itself improve ductility, indicates that although grain boundaries might well be the weakest links in NiAI, cleavage planes are not much stronger. In other words, even though boron additions serve to strengthen the grain boundaries and suppress intergranular fracture, ductility is not improved, because the next brittle fracture mode, namely transgranular cleavage, takes over before significant plastic deformation can occur.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3