Surface Structure - Catalytic Function in Nanophase Gold Catalysts

Author:

Sze Chien,Gulari Erdogan,Demczyk B.G.

Abstract

ABSTRACTCatalysts consisting of ultra-fine gold particles supported on iron oxide have been synthesized by the coprecipitation method. Subsequent to preparation, each sample was heat treated in air at four different temperatures, ranging from 473 K to 773 K. Steady state carbon monoxide oxidation was carried out over each sample. Upon extended reaction, catalyst deactivation took place over three of the catalysts whose respective surface compositions (e.g., gold to iron atomic ratio) were altered appreciably from their initial state. Surface structure analyses performed on all the unreacted catalysts have revealed variations in physical properties (e.g., degree of crystallinity and particle size). In addition, lattice parameters of gold were observed to increase up to 20 % from the bulk value. In contrast, XPS showed both gold and iron to be in essentially the same chemical states for all catalysts, irrespective of heat treatment temperatures. The importance of surface sensitive parameters to catalytic function are discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3