A quantitative analysis of cavitation in Al–Cu–Mg metal matrix composites exhibiting high strain rate superplasticity

Author:

Wada Shuichi,Mabuchi Mamoru,Higashi Kenji,Langdon Terence G.

Abstract

Specimens of two Al–Cu–Mg (2124) composites, reinforced with 20 vol% of either Si3N4 particulates or Si3N4 whiskers, were tested under experimental conditions close to those for optimum high strain rate superplasticity. Both composites developed extensive internal cavitation during testing, but quantitative measurements show that significant cavity growth occurs throughout the test in the whisker-reinforced composite, but only at strains ≥1.0 in the particulate-reinforced composite. This difference in behavior is attributed to differences in the extent of a discontinuous liquid phase at the grain boundaries and at the matrix/reinforcement interfaces. It is concluded that the presence of an extensive liquid phase in the particulate-reinforced composite is beneficial for attaining high ductility because it relieves the stress concentrations from grain boundary sliding and thereby limits the growth of cavities.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3