Y2BaCuO5 addition and its effects on critical currents in large grains of YBa2Cu3O7–δ: A quantitative microstructural study

Author:

Chopra Manoj,Chan Siu-Wai,Meng R. L.,Chu C. W.

Abstract

The addition of Y2BaCuO5 (211) particles to large grain melt textured YBa2Cu3O7–δ(Y123) has significantly improved the critical current density (Jc) of this material. Here, a systematic quantitative analysis on the effects of the 211 addition was performed on a microscopic scale with a systematic variation of the initial volume percent of 211. From the correlation between critical current measurements and quantitative microscopy of both (001) and (110) sections, a maximum value of Jc is observed, corresponding to a measured Y123 volume percent of 20% ± 3%. Accounting for the loss of liquid phase for the present processing, the corresponding optimum initial volume of 211 for the highest measured Jc is 40%. Further comparison between the weighted Jc and the true flux pinning force (Fp) also shows a maximum pinning force for an initial 211 addition of 40%. Although the weighted Jc starts to decrease with an initial 211 volume of above 40%, the pinning efficiency at higher magnetic fields (2–4 T) of the superconducting Y123 matrix was actually improved with an ever increasing 211 addition to at least 50%. Though an increasing addition of 211 is effective in producing efficient flux pinning sites in the Y123 matrix, percolation paths in the Y123 matrix become limited for supercurrent. Hence, a measured 211 volume corresponding to 80% 211 is proved to give the best possible critical current density. Furthermore, crack opening and crack spacing of the superficial cracks are found to decrease with an increasing 211 addition and with a decreasing 211 interparticle spacing. The penetration and surface length of each of these superficial cracks are hence reduced, which leads to a better electrical connectivity in the Y123 matrix.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3