Abstract
Electronic structure calculations were carried out for bcc iron grain boundaries (GB) with or without hydrogen, using the self-consistent Discrete Variational embedded cluster method within the first-principles local density formalism. Bonding characteristics were mainly investigated. Simple rigid body translations perpendicular to the GB plane were used for estimation of relaxed GB geometry. Analysis of bond order summation over the GB shows considerable volume expansion normal to the GB plane of a dense 23(111) twist/tilt GB and some compression for the rather open 23(110) twist configuration. These results are discussed in the context of atomistic simulations which suggest that higher energy GB's generally have larger volume expansion normal to the GB plane. H in a 23(111) GB reduces Fe-Fe bonding strength by —3% within a 0.25 nm spherical volume around the H site, associated with reduction of the 4s and 4p occupancy of the nearest neighbor Fe. Since these orbitals contribute mainly to metallic bonding, the action of H atoms as an embrittlement inducer can be understood.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献