Polymer Encapsulated Microelectronics: Mechanisms of Protection and Failure

Author:

Anderson J. E.,Markovac V.,Troyk P. R.

Abstract

ABSTRACTThis research relates electrochemical failure of encapsulated microelectronics to surface moisture and to surface impurities. It draws heavily on “osmotic blistering”, a phenomenon known to produce corrosive failure of coated/painted metals [1].Leakage currents were measured on aluminum comb specimens as a function of relative humidity (RH) and temperature. We studied both bare combs and combs encapsulated with polysiloxane. 9.05 Vdc bias was used. We performed “contamination-by-design” experiments by deliberately introducing known amounts of NaCl, CaCl2 and sucrose onto the comb surface. Results were compared with corresponding data taken on well-cleaned specimens.Our principal findings are(1) Under dry conditions (RH<1%), small leakage currents are observed, ranging between 1-10 pA, which are insensitive to surface contamination levels. This implies that solid surface impurities Rer se do not promote electrochemical IC failure.(2) In extremely moist environments (RH>99%), surface-contaminated samples exhibit large leakage currents, ranging between 1 and 10 pA, that are roughly proportional to surface loading.(3) Different surface chemical compounds produce leakage-current steps at specific RH values, corresponding to solid-to-saturated solution transitions. For example, CaCI2 exhibits a transition at 21% RH; NaCl at 75% RH. At RH values above the transition, aqueous droplets, or vacuoles, were observed at surface sites occupied by solid deposits. The RH location of the transitions is largely unaffected by the presence or absence of polymer encapsulant. Leakage current steps were typically four to six orders of magnitude. The size of the step change varied between bare and encapsulated samples, and with surface loadings.(4) Variable temperature studies, performed at constant external water vapor, exhibited step decreases in leakage current at temperatures corresponding to saturated solution to solid transitions.(5) Sucrose, a nonelectrolyte, exhibited a leakage current step similar to those observed with CaCl 2 and NaCl. The size of the sucrose step change was significantly less than that observed with the electrolytes.(6) Electrochemical attack patterns varied among the different chemical compounds. For example, as shown in Fig. i, CaCl 2 exhibited anodic attack on alternate metallization lines. NaCl produced attack on all metallization lines.A full report of this work will appear elsewhere [2].

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference3 articles.

1. 2. Anderson J.E. , Markovac V. and Troyk P.R. , IEEE Trans. Components, Hybrids, and Manuf. Technol., to appear (1988).

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3