Lattice Disorder Effects on The Vacancy-Oxygen Centre in Ion-Irradiated Silicon

Author:

Keskitalo N.,Hallén A.,Lalita J.,Svensson B. G.

Abstract

ABSTRACTThe Vacancy-Oxygen (VO) centre is one of the most prominent defects appearing in silicon after irradiation with energetic particles and gamma rays. It is formed when migrating vacancies are trapped by interstitial oxygen atoms. It gives rise to a deep level in the upper part of the silicon bandgap at 0.164 eV below the conduction band edge that can be conveniently studied by deep level transient spectroscopy (DLTS). It is furthermore a very important defect from a technological point of view since it normally controls the charge carrier lifetimes in silicon power devices at high injection levels.Various doped n-type float zone Si samples have been irradiated with MeV ions at low doses. DLTS measurements of the charge carrier capture kinetics reveal lower capture rates if heavier ions, i.e. larger collision cascades, have been used to generate the defects. This effect can be interpreted as a local lowering of the Fermi level following lattice disorder in regions with a high elastic energy deposition. It will be shown that the VO is also very sensitive to lattice disorder in a similar way as previously reported for the divacancy centre.In the DLTS spectra another defect, originating from an interstitial-carbon—substitutional-carbon pair (Cj-Cs), overlaps with the VO-peak. The Ci-Cs pair has been observed to posses bistable properties and in this paper we will further elucidate the various contributions from the two defects to the Ec-0.164 eV peak. In particular, the temperature dependence of the electron capture cross section of the Cj-Cs level will be discussed.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3