Author:
Feenstra K. F.,Van Der Werf C. H. M.,Molenbroek E. C.,Schropp R. E. I.
Abstract
ABSTRACTIn this paper we present the results of the optimization of hydrogenated amorphous silicon films deposited by the hot-wire method in a larger area system. Using a two-wire design, we succeeded in depositing films that exhibit uniform electrical properties over the whole 4” x 4” Corning 7059 glass substrate. At a substrate temperature of 430 °C. and a pressure of 20 μbar we obtained a growth rate of ∼2 nm/s. The temperature of the tungsten filaments was kept at 1850 °C. The values for the photoconductivity and dark conductivity were 8.9×10−6 S/cm and 1.6×10−10 S/cm respectively, whereas the ambipolar diffusion length, as measured with the Steady-State Photocarrier Grating technique (SSPG), amounted to 145 nm. This value is higher than for our device quality glow-discharge (GD) films, which yield devices with efficiencies higher than 10%. The hydrogen content was 9.5%.We report on the density-of-states (DOS) distribution in the films, which was measured with the techniques of Thermally Stimulated Conductivity (TSC) and Constant Photocurrent Method (CPM). Furthermore, we describe the behavior of the electrical properties on light-induced degradation. Finally, we incorporated these films in solar cells, using conventional GD doped layers. Preliminary SS/n-i-p/ITO devices yielded efficiencies in excess of 3% under 100 mW/cm2 AM 1.5 illumination. Further work concerning the optimization of the interfaces is in progress.
Publisher
Springer Science and Business Media LLC
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献