Solidification of YBa2Cu3O6+δ: Part I. Morphology

Author:

Shen Hua,Flemings Merton C.,Cima Michael J.,Haggerty John,Honjo Shoichi,Rigby Karina,Sung Tae Hyun

Abstract

A new quenching technique was used for detailed microstructural examination of quenched YBa2Cu3O6+δ/liquid interfaces. The examination revealed that the growth rate and the amount of excess Y2BaCuO5 (211) had a strong influence on the growth morphology of YBa2Cu3O6+δ (123). The maximum growth rate at which single crystal growth could be obtained increased from 1 μm/s to 1.5 μm/s as excess 211 content increased from 0 to 20 wt. %. It then decreased to 1 μm/s as excess 211 increased to 40 wt. %. Dendritic growth with distinguishable secondary arms occurred for stoichiometric 123 samples in the regime of cellular/dendritic growth. A highly curved 123 envelope was formed on 211 particles located at the 123 growth interface for stoichiometric 123 samples in the regime of single crystal growth. The microscopic 123 growth interface became flat as excess 211 content increased to 20 wt. %. The engulfment of 211 particles into 123 matrix is discussed based on detailed microstructural examination. It is found that the formation of a small highly curved 123 envelope on 211 particles for stoichiometric 123 samples is due to the large 211 particle spacing.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3