Auto ignition synthesis and consolidation of Al2O3–ZrO2 nano/nano composite powders

Author:

Bhaduri S.,Bhaduri S. B.,Zhou E.

Abstract

An “Auto Ignition” technique was utilized in synthesizing Al2O3 –ZrO2 powders with nano/nano microstructure. The process used the corresponding nitrates as oxidizers and urea as the fuel. The as-synthesized powders were characterized by x-ray diffraction and transmission electron microscopy. It was observed that the microstructure consisted of crystallites of Al2O3 and ZrO2, both of which were nanocrystalline. As opposed to the other nanocomposite ceramics, this feature of the microstructure classifies the present powders as nano/nano type. This nanocrystallinity of the microstructure (crystallite size less than 100 nm) was maintained even after a soaking at 1200 °C for 2 h. Since the microstructure is stable at high temperatures, it was possible to densify the powders by hot isostatic pressing at 1200 °C. The product was 99% of the theoretical density and maintained nanocrystalline grain size. The average hardness and toughness values, as determined by an indentation technique, were 4.45 GPa and 8.38 MPa · m1/2, respectively. These values represent evidence of ductility in these composites since transformation toughening was ruled out in this case. The potential application of these results is expected to be in net shape deformation forming of ceramics.

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3