Abstract
The nature of dissociated superlattice dislocation cores in Al66Ti25Cr9, deformed at room temperature, has been characterized by weak-beam transmission electron microscopy (TEM) and comparison of experimental images with computer-simulated images. The displacement fields associated with narrowly dissociated APB- and SISF-dissociated ‹110› superdislocations were calculated to account for the asymmetry in dislocation contrast and led to a better understanding of the formation of images. Such calculations are a powerful aid, when coupled with image simulations, in distinguishing the “real” intensity peaks from the supplementary peaks that can be generated under experimental imaging conditions. While both APB- and SISF-dissociated superdislocations were identified, the vast majority of superdislocations were determined to be APB-dissociated. Corrected values of the fault energies (γAPBand γSISF) have been measured for this alloy. These energies and the observed dissociations are shown to be self-consistent.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献