Author:
Bramley A. P.,Grovenor C. R. M.,Goringe M. J.,O'Connor J. D.,Jenkins A. P.,Dew-Hughes D.,Reschauer N.,Wagner H. H.,Brozio W.,Spreitzer U.,Renk K. F.
Abstract
We have developed a process for the fabrication of (001) oriented SrTiO3 buffer layers onto (001) MgO substrates by rf magnetron sputtering followed by a post-deposition heat treatment in air. Precursor films with Tl :Ba : Ca : Cu ratio 2 : 2 : 2 : 3 were deposited by dc magnetron sputtering onto both these buffered substrates and directly onto (001) SrTiO3 single-crystal substrates, and thalliated at elevated temperatures. Because of Sr diffusion from the substrate/buffer layer, and its subsequent substitution for Ba in the superconducting film, the single Tl–O layer phase Tl(Ba1−xSrx)2Ca2Cu3Oy was stabilized. Diffusion of Ba and Ca in the opposite direction led to the formation of a Ba–Ca–Ti–O compound at the interface. The Tl(Ba1xSrx)2Ca2Cu3Oy films typically have superconducting transition temperatures (Tc's) > 103 K and critical current densities (Jc's) > 2.9 × 105 A cm−2 at 77 K. Rs values measured on these films and scaled to 10 GHz were 3.0 mΩ at 80 K and <200 µΩ at 50 K for the film grown on SrTiO3 buffered MgO, and 2.0 mΩ and 1.0 mΩ at 50 K for the film grown directly onto the (001) SrTiO3 substrate. Films fabricated on (001) SrTiO3 using an in situ deposition technique with a substrate temperature around 100 °C lower than the ex situ thalliation temperature showed no evidence of an interfacial reaction layer.
Publisher
Springer Science and Business Media LLC
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献