The Effect of Oxygen Deposition Pressure on the Structure and Properties of Pulsed Laser Deposited LaxCa1−xMnOδ Films

Author:

Horwitz J. S.,Dorsey P. C.,Koon N. C.,Rubinstein M.,Byers J. M.,Gillespie D. J.,Osofsky M. S.,Harris V. G.,Grabowski K. S.,Knies D. L.,Donovan E. P.,Treece R. E.,Chrisey D. B.

Abstract

AbstractThin films (∼1000 Å) of LaxCa1−xMnOδ (x=0.67) were deposited onto LaA1O3 (100) substrates at of 600 and 700°C. Varying the oxygen deposition pressure between 15 and 400 mTorr systematically changed the oxygen concentrations in the as deposited films. Asdeposited films exhibited an orthorhombic structure with an oxygen pressure dependent lattice parameter. The films were highly oriented as characterized by narrow x-ray ω-scans (FWHM ≤ 0.16 −0.70°). At low pressures, the films were preferentially (202) oriented while at high pressures deposited films had a (040) preferred orientation. A 900°C anneal in flowing oxygen for a film deposited at low oxygen pressures resulted in a decrease in the lattice parameter (associated with an increase in δ) and a change in the preferred orientation from (202) to (040). The resistivity as a function of temperature (R(T)) showed a significant variation as a function of growth conditions. At 600°C, the peak in the resistivity curve (Tm) varied between 73 and 93 K for P(O2) = 15 to 400 mTorr, while at 700°C, Tm was ∼150 K. For films deposited at 600°C, the resistivity was reduced by a factor of 103 for H = 9T and Tm was shifted to 150 K. The activation energy associated with the semiconducting phase was approximately the same for all as-deposited films (∼100 meV).

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Pulsed laser deposition as a materials research tool;Applied Surface Science;1998-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3