The Influence of the Initial Supersaturation of Si Interstitial Atoms on the Relative Thermal Stability of Dislocation Loops in Silicon

Author:

Cristiano F.,Colombeau B.,Mauduit B. de,Giles F.,Omri M.,Claverie A.

Abstract

AbstractIn this work, we have studied the relative stability of perfect (PDLs) and faulted (FDLs) dislocation loops formed during annealing of preamorphised silicon. In particular, we have investigated the effect of the initial supersaturation of Si interstitial atoms (Si(int)s) created by the implantation process on their thermal evolution. Transmission Electron Microscopy analysis shows that in samples with a low Si interstitial supersaturation, FDLs are the dominant defects while PDLs appear as the most stable defects in highly supersaturated samples. We have calculated the formation energies of both types of dislocation loops and found that, for defects of the same size, FDLs are more energetically stable than PDLs, if their diameter is smaller than 80 nm and viceversa. The application of these calculations to the samples studied in this work indicates that a direct correspondence exists between the formation energy of the two defect families and the number of atoms bound to them. Moreover, we have shown that the relative stability of FDLs and PDLs depends on the initial supersaturation of Si(int)s created during the implantation process.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3