Author:
Bonderover Eitan,Wagner Sigurd,Suo Zhigang
Abstract
AbstractIn the most fundamental approach, e-Textile circuits will be made by weaving component fibers into circuits. The weaving pattern will determine the circuit function. A key requirement of such e-Textile circuits is reliable electrical contact between fibers. Contacts which rely only on the pressure between fibers are preferred since they preserve the drapability of real fabrics. Since thin-film device fabrication technology is planar, the component fibers, made by the slit-film technique, are flat. Thus a slight edge-to-edge curvature (with a radius of curvature as large as 500mm) can either prevent or promote electrical contact. Using fibers with thin-film transistors of amorphous silicon, we study the processes that produce the desired fiber curvature. A layer of stressed silicon nitride is used to create the curvature. The stress in this layer can be controlled by the deposition parameters. We present successful fabrication of curved fibers with vastly improved electrical contact. We also present electrical characterization of woven transistor circuits
Publisher
Springer Science and Business Media LLC
Reference9 articles.
1. 150°C Amorphous Silicon Thin-Film Transistor Technology for Polyimide Substrates
2. Amorphous silicon thin-film transistors on compliant polyimide foil substrates
3. Amorphous silicon thin film transistors on kapton fibers;Bonderover;Material Resource Society Symposium Proceedings,2002
4. [4] http://www.sensatex.com.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Electronic skin: architecture and components;Physica E: Low-dimensional Systems and Nanostructures;2004-11