Abstract
The investigation of many stoichiometric variations involving large numbers of combinations of elements offers a means to discover a hydride with optimal properties. We introduce the use of spatially resolved infrared imaging as a high throughput hydrogen storage candidate screening technique. Analysis is presented of a sample that consists of 16 separate Mg-Ni-Fe ternary pads and 32 Mg-Ni or Mg-Fe binary pads. Hydrogen sorption related emissivity changes observed indicate a substantial decrease in hydriding temperatures, which sensitively depends on composition.
Publisher
Springer Science and Business Media LLC
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献