Author:
Cayrel F.,Alquier D.,Dubois C.,Jerisian R.
Abstract
AbstractHigh dose helium implantation followed by a suitable thermal treatment induces defects such as cavities and dislocations. Gettering efficiency of this technique for metallic impurities has been widely proved. Nevertheless, dopants, as well as point defects, interact with this defect layer. Due to the presence of vacancy type defects after helium implantation, boron diffusion can be largely influenced by such a buried layer. In this paper, we study the influence of helium induced defects on boron diffusion. The boron diffusion in presence of these defects has been analyzed as a function of different parameters such as distance between boron profile and defect layer and defect density. Our results demonstrate that the major impact known as boron enhanced diffusion can be partially or completely suppressed depending on parameters of experiments. Moreover, these results clarify the interaction of boron with extended He-induced defects.
Publisher
Springer Science and Business Media LLC