Fractal and Dendritic Growth of Surface Aggregates

Author:

Brune H.,Bromann K.,Kern K.,Jacobsen J.,Stoltze P.,Jacobsen K.,Nørskov J.

Abstract

ABSTRACTThe similarity of patterns formed in non-equilibrium growth processes in physics, chemistry and biology is conspicuous and many attempts have been made to discover common mechanisms underlying their growth. The central question in this context is what causes some patterns to be dendritic, as e.g. snowflakes, while others grow fractal (randomly ramified). Here we report a crossover from fractal to dendritic patterns for growth in two dimensions: the diffusion limited aggregation of Ag atoms on a Pt(111) surface as observed by means of variable temperature STM. The microscopic mechanism of dendritic growth can be analyzed for the present system. It originates from the anisotropy of the diffusion of adatoms at corner sites which is linked to the trigonal symmetry of the substrate. This corner diffusion is observed to be active as soon as islands form, therefore, the classical DLA clusters with the hit and stick mechanism do not form. The ideas on the mechanism for dendritic growth have been verified by kinetic Monte-Carlo simulations which are in excellent agreement with experiment.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference49 articles.

1. [49] Brune H. , Bromann K. , Röder H. , Kern K. , Jacobsen J. , Stolze P. , Jacobsen K. and Nørskov J. , Phys. Rev. B rapid communications in press (1995).

2. Microscopic View of Nucleation on Surfaces

3. Temperature dependence of the sputtering morphology of Pt(111)

4. [42] This important difference has first been realized by Zhang et al. in ref. 37

5. [41] During preparation of this manuscript it came to our attention that also Michely et al. interpret their islands as dendritic. They suggest a similar explanation based on anisotropic corner diffusion.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3