Investigations on Sol-Gel Derived Ba0.5Sr0.5Ti1-δMnδO3 (δ = 0.0 to 5.0 at%) Thin Films for Phase Shifter Applications

Author:

Katiyar R.S.,Jain M.,Majumder S.B.,Romanofsky R.R.,Keuls F.W. van,Miranda F.A.

Abstract

AbstractHighly (100) oriented Ba0.5Sr0.5Ti1-δMnδO3 thin films were deposited on (100) LaAlO3 (LAO) substrate by sol-gel technique. We have studied systematically the effect of Mn doping on the degree of texturing, surface morphology, dielectric properties and phase transition behavior of barium strontium titanate (BST) thin films. Up to 3 at % Mn doping the degree of (100) texturing and grain size of BST (50/50) thin films were markedly improved, which led to an increased tunability from 29% (undoped) to 39% (3 at % Mn doped); measured at 1 MHz and 2.34V/mm bias field. The transition and Curie-Weiss temperatures of BST (50/50) thin films were found to be about 266 K and 185 K respectively, which confirmed the first order phase transition in the films. The variation of transition temperatures as a function of Mn doping contents in BST (50/50) thin films were influenced by the variation of stress state and surface morphology modifications induced by Mn doping. The bias field dependence of the dielectric constant and loss tangents of undoped and Mn doped films were analyzed in terms of a model based on Devonshire theory. Phase shift measurements showed that the degree of phase shift increases from 239° to 337° with 0 to 3 at% Mn doping. The insertion loss also increases from 5.4 dB (undoped) to 9.9 dB (3 at % Mn doped) with doping content so that there is no effective improvement in the k factor, which remains in the range of 33 - 44°/dB. Modification in surface morphology and film stoichiometry induced by Mn doping is thought to play significant role in observed phase shifter characteristics.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3