Author:
Dharmasena K. P.,Wadley H. N. G.
Abstract
ABSTRACTCellular materials are characterized by their relative density, pore shape and orientation, the average cell size, and the degree of pore interconnectivity which all depend upon the method and conditions used for processing. This has created an interest in non-invasive sensor techniques to characterize the foam structure. Multifrequency electrical impedance measurements were performed using an eddy current technique on open cell aluminum foam with systematically varied relative densities and pore sizes. The impedance was dominated at all frequencies by the amount of metal contained within a probed volume of foam and the tortuosity of the current path. At low frequency, the impedance data were found to be relatively insensitive to pore size variations enabling an independent measure of the relative density. At high frequency, the data indicated a strong dependence on the cell size.
Publisher
Springer Science and Business Media LLC
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献