Modelling experimental results on radiolytic processes at the spent fuel water interface. II. Radionuclides release

Author:

Cera E.,Grivé M.,Bruno J.,Eriksen T.E.

Abstract

ABSTRACTExperimental and modelling efforts in the last decade in the frame of nuclear waste management field have been focused on studying the role of the UO2surfaces in poising the redox state of solid/water systems as well as the radionuclides release behaviour. For this purpose, an experimental programme was developed consisting on dissolution experiments with PWR spent fuel fragments in an anoxic environment and by using different solution compositions.Some of the collected data has been previously published [1], specifically those data concerning radiolysis products and dissolution of the matrix. The results and the modelling tasks indicated an overall balance of the generated radiolytic species and that uranium dissolution was controlled by the oxidation of the spent fuel matrix in 10mM bicarbonate solutions while in the tests carried out at lower or without carbonate concentrations uranium in the aqueous phase was governed by the precipitation of schoepite.This paper is the continuation of a series accounting for the data and modelling work related to investigating the release behaviour of minor radionuclides from the spent fuel.Uranium concentrations as a function of time showed an initial increase until reaching a steady state, indicating a matrix dissolution control. The same behaviour is observed for neptunium, caesium, strontium, technetium and molybdenum indicating a congruent release of these elements with the major component of the fuel matrix. On the other hand, no cler tendency is observed for plutonium data where additional solubility limiting mechanisms may apply.Kinetic modelling of the trace elements: caesium, strontium, technetium and molybdenum is based on the congruent release of these elements with the major component of the fuel matrix. Rate constants have been determined. Kinetic modelling of neptunium data took also into account the subsequent precipitation as Np(IV) hydroxide. Finally, measured Pu concentrations may be explained by the precipitation of Pu(IV) and/or Pu(III) solid phases.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference17 articles.

1. 17. Duro L. , Grivé M. , Domínech C. , Cera E. , Gaona X. , Bruno J. . ANDRA Report, Version 3, 384pp. (2005).

2. Solubility and hydrolysis of tetravalent actinides

3. 11. Bruno J. , Cera E. , Eriksen T.E. , Grivé M. , and Duro L. . SKB TR 03-03 (2003).

4. The Chemical State of Fission Products in Oxide Fuels at Different Stages of the Nuclear Fuel Cycle

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3