Neptunium Solubility in the Near-Field Environment of a Proposed Yucca Mountain Repository

Author:

Sassani David C.,Van Luik Abraham,Summerson Jane

Abstract

ABSTRACTFor representing the source-term of a proposed repository at Yucca Mountain, NV, the performance assessment (PA) approach evaluates the disequilibrium degradation of the waste forms to capture a bounding rate for radionuclide source-term availability and use solubility constraints that are more representative of longer-term, equilibrium processes to limit radionuclide mass transport from the source-term. These solubility limits capture precipitation processes occurring either as the waste forms alter, or in the near-field environment as chemical conditions evolve. A number of alternative models for solubility controls on dissolved neptunium concentrations have been evaluated. These alternatives include idealized models based on precipitation of simple, discrete neptunium phases and more complex considerations of trace amounts of neptunium being incorporated into secondary uranyl phases that form during waste form alteration. Thermodynamic constraints for neptunium under oxidizing conditions indicate that tetravalent neptunium solids (e.g., NpO2) are more stable relative to pentavalent phases (e.g., Np2O5), and therefore have solubilities that set lower dissolved concentrations of neptunyl species. Within solution, the pentavalent neptunyl ion (NpO2+) and its complexes dominate. Data on solids and solutions from slow flow-through (dripping) tests on spent nuclear fuel (SNF) grains indicate that neptunium is tetravalent in the SNF and that, over the ∼9 years duration of the tests, the dissolved neptunium concentrations are near to, or below, calculated NpO2 solubility. Currently, the NpO2 solubility model is applied at the waste forms within waste packages because the degradation of SNF and corrosion of alloys ensures active reduction reactions. The more conservative Np2O5 solubility model is applied in environments distal to the waste forms (i.e., the invert below waste packages) where reduction of dissolved pentavalent neptunium is less certain. Consideration of Np incorporation into secondary uranyl phases suggests that both of these idealized models will provide conservative estimates of neptunium release to the geosphere.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3