Impact of Advanced Fuel Cycles on Geological Disposal

Author:

Marivoet Jan,Weetjens Eef

Abstract

AbstractIn recent years the increasing oil prices and the need for carbon-free energy to limit global warming have resulted in a revival of interests in nuclear energy. Advanced nuclear fuel cycles are being studied worldwide. They aim at making more efficient use of the available resources, reducing the risk of proliferation of nuclear weapons, and facilitating the management of the resulting radioactive waste. Recently, the Red-Impact project has investigated the impact of a number of representative advanced fuel cycles on radioactive waste management, and more specific on geological disposal. The thermal output of the high-level waste arising from advanced fuel cycles in which all the actinides are recycled is reduced with a factor 3 for a 50 years cooling time and with a factor 5 for a 100 years cooling time in comparison with the spent fuel arising from the once-through fuel cycle. This reduction of the thermal output allows for a significant reduction of the length of the disposal galleries and of the size of the repository. Separation of Cs and Sr drastically reduces further the thermal output of the high-level waste, but it requires a long-term management of those heat generating separated waste streams, which contain the very long-lived 135Cs. Recycling all the actinides strongly reduces the radiotoxicity in the waste, resulting in significantly lower doses to an intruder in the case of a human intrusion into the repository. However, the reduction of radiotoxicity has little impact on the main safety indicator of a geological repository, i.e. the effective dose in the case of the expected evolution scenario; for disposal in clay formations, this dose is essentially due to mobile fission and activation products. The deployment of advanced fuel cycles will necessitate the development of low activation materials for the new nuclear facilities and fuels and of specific waste matrices to condition the high-level and medium-level waste streams that will arise from the advanced reprocessing plants.

Publisher

Springer Science and Business Media LLC

Subject

General Engineering

Reference16 articles.

1. Materials Science of High-Level Nuclear Waste Immobilization

2. 7 Implications of Partitioning and Transmutation in Radioactive Waste Management (International Atomic Energy Agency, Vienna, 2004) technical reports Series No. 435.

3. 11 SAFIR 2: Safety Assessment and Feasibility Interim Report (ONDRAF/NIRAS, Brussels, Belgium, 2001) report NIROND 2001-06 E.

4. 9 Impact of Advanced Nuclear Fuel Cycle Options on Waste Management Policies (Nuclear Energy Agency, Paris, 2006).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3